CNCM Online Round 3

CNCM Administration

November 7, 2020

A 3 Problems

Problem 1. Harry, who is incredibly intellectual, needs to eat carrots C_{1}, C_{2}, C_{3} and solve Daily Challenge problems D_{1}, D_{2}, D_{3}. However, he insists that carrot C_{i} must be eaten only after solving Daily Challenge problem D_{i}. In how many satisfactory orders can he complete all six actions?

Problem 2. Consider rectangle $A B C D$ with $A B=6$ and $B C=8$. Pick points E, F, G, H such that the angles $\angle A E B, \angle B F C, \angle C G D, \angle A H D$ are all right. What is the largest possible area of quadrilateral $E F G H$?

Problem 3. Let $a_{1}=1$ and $a_{n+1}=a_{n} \cdot p_{n}$ for $n \geq 1$ where p_{n} is the nth prime number, starting with $p_{1}=2$. Let $\tau(x)$ be equal to the number of divisors of x. Find the remainder when

$$
\sum_{n=1}^{2020} \sum_{d \mid a_{n}} \tau(d)
$$

is divided by 91 for positive integers d. Recall that $d \mid a_{n}$ denotes that d divides a_{n}.
Problem 4. Hari is obsessed with cubics. He comes up with a cubic with leading coefficient 1 , rational coefficients and real roots $0<a<b<c<1$. He knows the following three facts: $P(0)=-\frac{1}{8}$, the roots form a geometric progression in the order a, b, c, and

$$
\sum_{k=1}^{\infty}\left(a^{k}+b^{k}+c^{k}\right)=\frac{9}{2}
$$

The value $a+b+c$ can be expressed as $\frac{m}{n}$, where m, n are relatively prime positive integers. Find $m+n$.
Problem 5. How many positive integers N less than 10^{1000} are such that N has x digits when written in base ten and $\frac{1}{N}$ has x digits after the decimal point when written in base ten? For example, 20 has two digits and $\frac{1}{20}=0.05$ has two digits after the decimal point, so 20 is a valid N .

Problem 6. Triangle $A B C$ has side lengths $A B=13, B C=14$, and $C A=15$. Let Γ denote the circumcircle of $\triangle A B C$. Let H be the orthocenter of $\triangle A B C$. Let $A H$ intersect Γ at a point D other than A. Let $B H$ intersect $A C$ at F and Γ at point G other than B. Suppose $D G$ intersects $A C$ at X. Compute the greatest integer less than or equal to the area of quadrilateral HDXF.

Problem 7. A subset of the non-negative integers S is said to be a configuration if $200 \notin S$ and for all nonnegative integers $x, x \in S$ if and only if both $2 x \in S$ and $\left\lfloor\frac{x}{2}\right\rfloor \in S$. Let the number of subsets of $\{1,2,3, \ldots, 130\}$ that are equal to the intersection of $\{1,2,3, \ldots, 130\}$ with some configuration S equal k. Compute the remainder when k is divided by 1810.

